Skip to main content
Cornell university
Cornell Statistics and Data Science Cornell Statistics and Data Science
  • About Us

    About Us
    Cornell's Department of Statistics and Data Science offers four programs at the undergraduate and graduate levels. Undergraduates can earn a BA in statistical science, social...

    Welcome to the Department of Statistics and Data Science
    History
    Facilities
    Statistics Graduate Society
    Recently Published Papers
  • Academics

    Academics

    Undergraduate
    PhD
    MPS
    PhD Minor in Data Science
    Courses & Course Enrollment
  • People

    People

    Faculty
    Field Faculty
    PhDs
    Emeritus Faculty
    Academic Staff
    Staff
    Research Areas of Expertise
    Statistical Consultants
  • News and Events

    News and Events

    Events
    News
  • Resources

    Resources

    Professional Societies and Meetings
    Affiliated Groups
    Career Services
    Cornell Statistical Consulting Unit
  • Alumni

    Alumni
    Cornell's Statistics and Data Science degrees prepare students for a wide variety of careers, from academia to industry.  See the After Graduation page for a general overview of...

    Alumni Profiles

Search form

You are here

  1. Home 
  2. Events 
  3. Statistics Seminars

Statistics Seminar Speaker: Razieh Nabi, 10/26/2022

Event Layout

Wednesday Oct 26 2022

Statistics Seminar Speaker: Razieh Nabi, 10/26/2022

4:15pm @ Virtual
In Statistics Seminars

Razieh Nabi is a Rollins Assistant Professor in the Department of Biostatistics and Bioinformatics at Emory Rollins School of Public Health. Her research is situated at the intersection of machine learning and statistics, focusing on causal inference and its applications in healthcare and social justice. More broadly, her work spans problems in causal inference, mediation analysis, algorithmic fairness, semiparametric inference, graphical models, and missing data. She has received her PhD (2021) in Computer Science from Johns Hopkins University. 

Talk: Causal and counterfactual views of missing data models

Zoom link to be shared with the SDS community via list servs

Abstract: It is often said that the fundamental problem of causal inference is a missing data problem -- the comparison of responses to two hypothetical treatment assignments is made difficult because for every experimental unit only one potential response is observed. In this talk, we consider the implications of the converse view: that missing data problems are a form of causal inference. We make explicit how the missing data problem of recovering the complete data law from the observed data law can be viewed as identification of a joint distribution over counterfactual variables corresponding to values had we (possibly contrary to fact) been able to observe them. Drawing analogies with causal inference, we show how identification assumptions in missing data can be encoded in terms of graphical models defined over counterfactual and observed variables. We note interesting similarities and differences between missing data and causal inference theories. The validity of identification and estimation results using such techniques rely on the assumptions encoded by the graph holding true. Thus, we also provide new insights on the testable implications of a few common classes of missing data models, and design goodness-of-fit tests around them. For relevant papers see: (i) Full Law Identification In Graphical Models Of Missing Data: Completeness Results (ICML 2020), (ii) Identification In Missing Data Models Represented By Directed Acyclic Graphs (UAI 2019), and (iii) On Testability and Goodness of Fit Tests in Missing Data Models (Preprint 2022). 

Event Categories

  • Statistics Seminars
  • Special Events

Image Gallery

Razieh Nabi
  • Home
  • About Us
  • Contact Us
  • Careers
© Cornell University Department of Statistics and Data Science

1198 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853

Social Menu

  • Facebook
  • Twitter
  • YouTube
Cornell Bowers CIS College of Computing and Information Science Cornell CALS ILR School

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.