Skip to main content
Cornell university
Cornell Statistics and Data Science Cornell Statistics and Data Science
  • About Us

    About Us
    Cornell's Department of Statistics and Data Science offers four programs at the undergraduate and graduate levels. Undergraduates can earn a BA in statistical science, social...

    Welcome to the Department of Statistics and Data Science
    History
    Facilities
    Statistics Graduate Society
    Recently Published Papers
  • Academics

    Academics

    Undergraduate
    PhD
    MPS
    PhD Minor in Data Science
    Courses & Course Enrollment
  • People

    People

    Faculty
    Field Faculty
    PhDs
    Emeritus Faculty
    Academic Staff
    Staff
    Research Areas of Expertise
    Statistical Consultants
  • News and Events

    News and Events

    Events
    News
  • Resources

    Resources

    Professional Societies and Meetings
    Affiliated Groups
    Career Services
    Cornell Statistical Consulting Unit
  • Alumni

    Alumni
    Cornell's Statistics and Data Science degrees prepare students for a wide variety of careers, from academia to industry.  See the After Graduation page for a general overview of...

    Alumni Profiles

Search form

You are here

  1. Home 
  2. Events 
  3. Statistics Seminars

Statistics Seminar Speaker: Mikhail Belkin, 10/23/2019

Event Layout

Wednesday Oct 23 2019

Statistics Seminar Speaker: Mikhail Belkin, 10/23/2019

4:15pm @ G01 Biotechnology
In Statistics Seminars

The Statistics Seminar speaker for Wednesday, October 23, 2019, is Mikhail Belkin, a professor in the Department of Computer Science and Engineering and the Department of Statistics at the Ohio State University. He received his PhD from the University of Chicago in Mathematics in 2003. His research focuses on understanding the fundamental structure in data, the principles of recovering these structures and their computational, mathematical and statistical properties. This understanding, in turn, leads to algorithms for dealing with real-world data. His work includes algorithms such as Laplacian Eigenmaps and Manifold Regularization which use ideas of classical differential geometry for analyzing non-linear high-dimensional data and have been widely used in applications.  Prof. Belkin is a recipient of an NSF Career Award and a number of best paper and other awards. He has served on the editorial boards of the Journal of Machine Learning Research and IEEE PAMI.

Talk: Beyond Empirical Risk Minimization: the lessons of deep learning

Abstract: “A model with zero training error is overfit to the training data and will typically generalize poorly” goes statistical textbook wisdom. Yet, in modern practice, over-parametrized deep networks with near perfect fit on training data still show excellent test performance. This apparent contradiction points to troubling cracks in the conceptual foundations of machine learning. While classical analyses of Empirical Risk Minimization rely on balancing the complexity of predictors with training error, modern models are best described by interpolation. In that paradigm a predictor is chosen by minimizing (explicitly or implicitly) a norm corresponding to a certain inductive bias over a space of functions that fit the training data exactly. I will discuss the nature of the challenge to our understanding of machine learning and point the way forward to first analyses that account for the empirically observed phenomena. Furthermore, I will show how classical and modern models can be unified within a single "double descent" risk curve, which subsumes the classical U-shaped bias-variance trade-off.

Finally, I will discuss the important implications for optimization, showing, in particular, how the lessons of deep learning can be used to accelerate kernel machines.

Event Categories

  • Statistics Seminars
  • Special Events

Image Gallery

Mikhail Belkin
  • Home
  • About Us
  • Contact Us
  • Careers
© Cornell University Department of Statistics and Data Science

1198 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853

Social Menu

  • Facebook
  • Twitter
  • YouTube
Cornell Bowers CIS College of Computing and Information Science Cornell CALS ILR School

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.