Skip to main content
Cornell university
Cornell Statistics and Data Science Cornell Statistics and Data Science
  • About Us

    About Us
    Cornell's Department of Statistics and Data Science offers four programs at the undergraduate and graduate levels. Undergraduates can earn a BA in statistical science, social...

    Welcome to the Department of Statistics and Data Science
    History
    Facilities
    Statistics Graduate Society
    Recently Published Papers
  • Academics

    Academics

    Undergraduate
    PhD
    MPS
    PhD Minor in Data Science
    Courses & Course Enrollment
  • People

    People

    Faculty
    Field Faculty
    PhDs
    Emeritus Faculty
    Academic Staff
    Staff
    Research Areas of Expertise
    Statistical Consultants
  • News and Events

    News and Events

    Events
    News
  • Resources

    Resources

    Professional Societies and Meetings
    Affiliated Groups
    Career Services
    Cornell Statistical Consulting Unit
  • Alumni

    Alumni
    Cornell's Statistics and Data Science degrees prepare students for a wide variety of careers, from academia to industry.  See the After Graduation page for a general overview of...

    Alumni Profiles

Search form

You are here

  1. Home 
  2. Events 
  3. Statistics Seminars

Statistics Seminar Speaker: Joe Guinness, 09/27/2017

Event Layout

Wednesday Sep 27 2017

Statistics Seminar Speaker: Joe Guinness, 09/27/2017

4:15pm @ G01 Biotechnology
In Statistics Seminars

The Statistics Seminar speaker for Wednesday, September 27, 2017, will be Joe Guinness, visiting assistant professor within Cornell's Department of Biological Statistics and Computational Biology. Guinness studies modeling and computational issues that arise in the analysis of large spatial-temporal datasets, with a focus on applications in earth sciences, including soil, weather, and climate. He teaches a graduate course in spatial statistics.

Talk: A General Framework for Vecchia approximations of Gaussian Processes

Abstract: Gaussian processes (GPs) are commonly used as models for functions, time series, and spatial fields, but they are computationally infeasible for large datasets. Focusing on the typical setting of modeling observations as a GP plus an additive noise term, we propose a generalization of the Vecchia (1988) approach as a framework for GP approximations. We show that our general Vecchia approach contains many popular existing GP approximations as special cases, allowing for comparisons among the different methods within a unified framework. Representing the models by directed acyclic graphs, we determine the sparsity of the matrices necessary for inference, which leads to new insights regarding the computational properties. Based on these results, we propose a novel sparse general Vecchia approximation, which ensures computational feasibility for large datasets but can lead to tremendous improvements in approximation accuracy over Vecchia's original approach. We provide several theoretical results, conduct numerical comparisons, and apply the methods to satellite data. This work is the result of a collaboration with Matthias Katzfuss.

Event Categories

  • Statistics Seminars
  • Special Events

Image Gallery

Joe Guinness
  • Home
  • About Us
  • Contact Us
  • Careers
© Cornell University Department of Statistics and Data Science

1198 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853

Social Menu

  • Facebook
  • Twitter
  • YouTube
Cornell Bowers CIS College of Computing and Information Science Cornell CALS ILR School

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.