Skip to main content
Cornell university
Cornell Statistics and Data Science Cornell Statistics and Data Science
  • About Us

    About Us
    Cornell's Department of Statistics and Data Science offers four programs at the undergraduate and graduate levels. Undergraduates can earn a BA in statistical science, social...

    Welcome to the Department of Statistics and Data Science
    History
    Facilities
    Statistics Graduate Society
    Recently Published Papers
  • Academics

    Academics

    Undergraduate
    PhD
    MPS
    PhD Minor in Data Science
    Courses & Course Enrollment
  • People

    People

    Faculty
    Field Faculty
    PhDs
    Emeritus Faculty
    Academic Staff
    Staff
    Research Areas of Expertise
    Statistical Consultants
  • News and Events

    News and Events

    Events
    News
  • Resources

    Resources

    Professional Societies and Meetings
    Affiliated Groups
    Career Services
    Cornell Statistical Consulting Unit
  • Alumni

    Alumni
    Cornell's Statistics and Data Science degrees prepare students for a wide variety of careers, from academia to industry.  See the After Graduation page for a general overview of...

    Alumni Profiles

Search form

You are here

  1. Home 
  2. Events 
  3. Statistics Seminars

Statistics Seminar Speaker: Yen-Chi Chen, 01/29/16

Event Layout

Friday Jan 29 2016

Statistics Seminar Speaker: Yen-Chi Chen, 01/29/16

4:15pm @ G01 Biotechnology
In Statistics Seminars

The Statistics Seminar speaker for Friday, January 29, 2016, is Yen-Chi Chen. He is currently a fourth-year PhD student in the Department of Statistics at Carnegie Mellon University, where he studies theoretical statistics and machine learning. Before pursuing his PhD, Chen earned a B.S. in Physics with a minor in Mathematics at National Taiwan University, Taiwan. 

Title: Statistical Inference Using Geometric Features

Abstract: In many scientific studies, researchers are interested in geometric structure in the underlying density function. Common examples are local modes, ridges, and level sets. In this talk, I will focus on two geometric structures: density ridges and modal regression. Density ridges are curve-like structures characterizing high density regions. I will first describe statistical models for ridges and then discuss their asymptotic theory and methods for constructing confidence sets. I will also show applications to astronomy. 

Modal regression is an alternative way to study the conditional structure of the response variable given covariates. Instead of estimating the conditional expectation, modal regression focuses on conditional local modes. I will present several useful statistical properties for modal regression, including asymptotic theory, confidence sets, prediction sets, and clustering. 

Refreshments will be served after the seminar in 1181 Comstock Hall. 

Event Categories

  • Statistics Seminars
  • Special Events
  • Home
  • About Us
  • Contact Us
  • Careers
© Cornell University Department of Statistics and Data Science

1198 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853

Social Menu

  • Facebook
  • Twitter
  • YouTube
Cornell Bowers CIS College of Computing and Information Science Cornell CALS ILR School

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.