Skip to main content
Cornell university
Cornell Statistics and Data Science Cornell Statistics and Data Science
  • About Us

    About Us
    Cornell's Department of Statistics and Data Science offers four programs at the undergraduate and graduate levels. Undergraduates can earn a BA in statistical science, social...

    Welcome to the Department of Statistics and Data Science
    History
    Facilities
    Statistics Graduate Society
    Recently Published Papers
  • Academics

    Academics

    Undergraduate
    PhD
    MPS
    PhD Minor in Data Science
    Courses & Course Enrollment
  • People

    People

    Faculty
    Field Faculty
    PhDs
    Emeritus Faculty
    Academic Staff
    Staff
    Research Areas of Expertise
    Statistical Consultants
  • News and Events

    News and Events

    Events
    News
  • Resources

    Resources

    Professional Societies and Meetings
    Affiliated Groups
    Career Services
    Cornell Statistical Consulting Unit
  • Alumni

    Alumni
    Cornell's Statistics and Data Science degrees prepare students for a wide variety of careers, from academia to industry.  See the After Graduation page for a general overview of...

    Alumni Profiles

Search form

You are here

  1. Home 
  2. Events 
  3. Statistics Seminars

Statistics Seminar Speaker: Yang Feng, 04/06/2016

Event Layout

Wednesday Apr 06 2016

Statistics Seminar Speaker: Yang Feng, 04/06/2016

4:15pm @ G01 Biotechnology
In Statistics Seminars

The Statistics Seminar Speaker for Wednesday, April 6, 2016, is Yang Feng, an assistant professor of Statistics at Columbia University. His research interests include High-dimensional statistical learning, nonparametric and semiparametric methods, bioinformatics and network models. He got his Ph.D. from the Department of Operations Research & Financial Engineering (ORFE) at Princeton University under the supervision of Professor Jianqing Fan in 2010. Before that, he received his B.S. in Mathematics from the Special Class for the Gifted Young (SCGY), University of Science and Technology of China (USTC) in 2006.

Title: Model Selection in High-Dimensional Misspecified Models 

Abstract: Model selection is indispensable to high-dimensional sparse modeling in selecting the best set of covariates among a sequence of candidate models. Most existing work assumes implicitly that the model is correctly specified or of fixed dimensions. Yet model misspecification and high dimensionality are common in real applications. In this paper, we investigate two classical Kullback-Leibler divergence and Bayesian principles of model selection in the setting of high-dimensional misspecified models. Asymptotic expansions of these principles reveal that the effect of model misspecification is crucial and should be taken into account, leading to the generalized AIC and generalized BIC in high dimensions. With a natural choice of prior probabilities, we suggest the generalized BIC with prior probability which involves a logarithmic factor of the dimensionality in penalizing model complexity. We further establish the consistency of the covariance contrast matrix estimator in a general setting. Our results and new method are supported by numerical studies. 

Refreshments will be served after the seminar in 1181 Comstock Hall 

Event Categories

  • Statistics Seminars
  • Special Events
  • Home
  • About Us
  • Contact Us
  • Careers
© Cornell University Department of Statistics and Data Science

1198 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853

Social Menu

  • Facebook
  • Twitter
  • YouTube
Cornell Bowers CIS College of Computing and Information Science Cornell CALS ILR School

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.