Skip to main content
Cornell university
Cornell Statistics and Data Science Cornell Statistics and Data Science
  • About Us

    About Us
    Cornell's Department of Statistics and Data Science offers four programs at the undergraduate and graduate levels. Undergraduates can earn a BA in statistical science, social...

    Welcome to the Department of Statistics and Data Science
    History
    Facilities
    Statistics Graduate Society
    Recently Published Papers
  • Academics

    Academics

    Undergraduate
    PhD
    MPS
    PhD Minor in Data Science
    Courses & Course Enrollment
  • People

    People

    Faculty
    Field Faculty
    PhDs
    Emeritus Faculty
    Academic Staff
    Staff
    Research Areas of Expertise
    Statistical Consultants
  • News and Events

    News and Events

    Events
    News
  • Resources

    Resources

    Professional Societies and Meetings
    Affiliated Groups
    Career Services
    Cornell Statistical Consulting Unit
  • Alumni

    Alumni
    Cornell's Statistics and Data Science degrees prepare students for a wide variety of careers, from academia to industry.  See the After Graduation page for a general overview of...

    Alumni Profiles

Search form

You are here

  1. Home 
  2. Events 
  3. Statistics Seminars

Statistics Seminar Speaker: Xiaofeng Shao, 04/25/2018

Event Layout

Wednesday Apr 25 2018

Statistics Seminar Speaker: Xiaofeng Shao, 04/25/2018

4:15pm @ G01 Biotechnology
In Statistics Seminars

The Statistics Seminar speaker on Wednesday, April 25, 2018 will be Xiaofeng Shao, a professor of Statistics at the department of Statistics at University of Illinois, Urbana-Champaign. His current research interests include econometrics, functional data analysis, time series analysis, high dimensional data analysis and Resampling methods, among others. He is serving as an associate editor for Journal of American Statistical Association, Journal of Multivariate Analysis and Journal of Time Series Analysis.

Talk: Martingale Difference Divergence and Its Applications to Contemporary Statistics

Abstract: Martingale difference divergence (MDD) is a metric that quantifies the conditional mean dependence of a random vector Y given another random vector X. We shall present applications of martingale difference divergence and its variant to two contemporary statistical problems: high dimensional dependence testing and dimension reduction for multivariate time series. In the first part, we propose a novel test to assess the conditional mean dependence of a response variable on  a large  number  of  covariates. Our MDD-based procedure  is able to detect certain type of departure from the null hypothesis of conditional mean independence without making any specific model assumptions. We establish the asymptotic normality of the proposed test statistic under suitable assumptions that can be verified for covariates with banded dependence or Gaussian distribution. Power analysis and a wild bootstrap procedure will also be presented along with some simulation results. In the second part, we introduce a new methodology to reduce the number of parameters in  multivariate time series modeling. In particular, we seek a contemporaneous linear transformation such that the transformed time series has two parts with one part being conditionally mean independent of the past information. Our dimension reduction procedure is based on eigen-decomposition of  the so-called cumulative martingale difference divergence matrix, which encodes the number and form of linear combinations that are conditionally mean independent of the past. We provide a simple way of estimating the number of factors and factor loading space, and obtain some theoretical results about the estimators. The finite sample performance will be illustrated from a real data analysis. If time permits, I will briefly talk about some ongoing work on the inference of high dimensional time series.

Event Categories

  • Statistics Seminars
  • Special Events

Image Gallery

X Shao headshot
  • Home
  • About Us
  • Contact Us
  • Careers
© Cornell University Department of Statistics and Data Science

1198 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853

Social Menu

  • Facebook
  • Twitter
  • YouTube
Cornell Bowers CIS College of Computing and Information Science Cornell CALS ILR School

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.