Skip to main content
Cornell university
Cornell Statistics and Data Science Cornell Statistics and Data Science
  • About Us

    About Us
    Cornell's Department of Statistics and Data Science offers four programs at the undergraduate and graduate levels. Undergraduates can earn a BA in statistical science, social...

    Welcome to the Department of Statistics and Data Science
    History
    Facilities
    Statistics Graduate Society
    Recently Published Papers
  • Academics

    Academics

    Undergraduate
    PhD
    MPS
    PhD Minor in Data Science
    Courses & Course Enrollment
  • People

    People

    Faculty
    Field Faculty
    PhDs
    Emeritus Faculty
    Academic Staff
    Staff
    Research Areas of Expertise
    Statistical Consultants
  • News and Events

    News and Events

    Events
    News
  • Resources

    Resources

    Professional Societies and Meetings
    Affiliated Groups
    Career Services
    Cornell Statistical Consulting Unit
  • Alumni

    Alumni
    Cornell's Statistics and Data Science degrees prepare students for a wide variety of careers, from academia to industry.  See the After Graduation page for a general overview of...

    Alumni Profiles

Search form

You are here

  1. Home 
  2. Events 
  3. Statistics Seminars

Statistics Seminar Speaker: Tudor Manole

Event Layout

Wednesday Sep 25 2024

Statistics Seminar Speaker: Tudor Manole

4:15pm @ G01 Biotech
In Statistics Seminars

Tudor Manole is a Norbert Wiener postdoctoral associate in the Statistics and Data Science Center at the Massachusetts Institute of Technology (MIT). He earned his PhD in Statistics at Carnegie Mellon University, where he was advised by Sivaraman Balakrishnan and Larry Wasserman. He is broadly interested in nonparametric statistics and statistical machine learning. Some specific research interests include statistical optimal transport, latent variable models, minimax hypothesis testing, and their applications to the physical sciences.

Talk: Central Limit Theorems for Smooth Optimal Transport Maps

Abstract: One of the central objects in the theory of optimal transport is the Brenier map: the unique monotone transformation which pushes forward an absolutely continuous probability law onto any other given law. Recent work has identified a class of plugin estimators of Brenier maps which achieve the minimax L^2 risk, and are simple to compute. In this talk, we show that such estimators obey pointwise central limit theorems. This provides a first step toward the question of performing statistical inference for smooth Brenier maps in general dimension. We further show that these results have implications for the problem of estimating the 2-Wasserstein distance. In particular, they allow us to develop the higher-order semiparametric efficiency theory for the Wasserstein distance, and as a consequence, we derive an efficient estimator of the Wasserstein distance under nearly optimal smoothness conditions.

This talk is based on joint work with Sivaraman Balakrishnan, Jonathan Niles-Weed, and Larry Wasserman.

Event Categories

  • Statistics Seminars
  • Special Events

Image Gallery

A color photo of a man smiling for a photo
  • Home
  • About Us
  • Contact Us
  • Careers
© Cornell University Department of Statistics and Data Science

1198 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853

Social Menu

  • Facebook
  • Twitter
  • YouTube
Cornell Bowers CIS College of Computing and Information Science Cornell CALS ILR School

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.