Skip to main content
Cornell university
Cornell Statistics and Data Science Cornell Statistics and Data Science
  • About Us

    About Us
    Cornell's Department of Statistics and Data Science offers four programs at the undergraduate and graduate levels. Undergraduates can earn a BA in statistical science, social...

    Welcome to the Department of Statistics and Data Science
    History
    Facilities
    Statistics Graduate Society
    Recently Published Papers
  • Academics

    Academics

    Undergraduate
    PhD
    MPS
    PhD Minor in Data Science
    Courses & Course Enrollment
  • People

    People

    Faculty
    Field Faculty
    PhDs
    Emeritus Faculty
    Academic Staff
    Staff
    Research Areas of Expertise
    Statistical Consultants
  • News and Events

    News and Events

    Events
    News
  • Resources

    Resources

    Professional Societies and Meetings
    Affiliated Groups
    Career Services
    Cornell Statistical Consulting Unit
  • Alumni

    Alumni
    Cornell's Statistics and Data Science degrees prepare students for a wide variety of careers, from academia to industry.  See the After Graduation page for a general overview of...

    Alumni Profiles

Search form

You are here

  1. Home 
  2. Events 
  3. Statistics Seminars

Statistics Seminar Speaker: Shane Jensen, 10/28/2015

Event Layout

Wednesday Oct 28 2015

Statistics Seminar Speaker: Shane Jensen, 10/28/2015

4:15pm @ G01 Biotechnology
In Statistics Seminars

The Statistics Seminar Speaker for October 28 is Shane T. Jensen, associate professor of Statistics at University of Pennsylvania's Wharton School. Dr. Jensen completed his PhD in Statistics at Harvard University and has been a professor at the Wharton School since 2004. For more information on Dr. Jensen's career and publications, please visit his website.

Title: Variable Selection with Bayesian Additive Regression Trees

Abstract: Bayesian Additive Regression Trees (BART, Chipman, George, and McCulloch, 2010) provides a novel nonparametric alternative to parametric regression approaches, such as the lasso or stepwise regression, especially when the number of relevant predictors is sparse relative to the total number of available predictors and the fundamental relationships are nonlinear. However, tree-based approaches such as BART are designed primarily to produce good predictions rather than being used for variable selection. We develop a principled permutation-based inferential approach for determining when the effect of a selected predictor is likely to be real. To demonstrate the potential of our approach in a biological context, we apply it to the task of inferring the gene regulatory network in yeast (Saccharomyces cerevisiae). We find that our BART-based procedure is best able to recover the subset of covariates with the largest signal compared to other variable selection methods. 

Refreshments will be served after the seminar in 1181 Comstock Hall. 

Event Categories

  • Statistics Seminars
  • Special Events
  • Home
  • About Us
  • Contact Us
  • Careers
© Cornell University Department of Statistics and Data Science

1198 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853

Social Menu

  • Facebook
  • Twitter
  • YouTube
Cornell Bowers CIS College of Computing and Information Science Cornell CALS ILR School

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.