Skip to main content
Cornell university
Cornell Statistics and Data Science Cornell Statistics and Data Science
  • About Us

    About Us
    Cornell's Department of Statistics and Data Science offers four programs at the undergraduate and graduate levels. Undergraduates can earn a BA in statistical science, social...

    Welcome to the Department of Statistics and Data Science
    History
    Facilities
    Statistics Graduate Society
    Recently Published Papers
  • Academics

    Academics

    Undergraduate
    PhD
    MPS
    PhD Minor in Data Science
    Courses & Course Enrollment
  • People

    People

    Faculty
    Field Faculty
    PhDs
    Emeritus Faculty
    Academic Staff
    Staff
    Research Areas of Expertise
    Statistical Consultants
  • News and Events

    News and Events

    Events
    News
  • Resources

    Resources

    Professional Societies and Meetings
    Affiliated Groups
    Career Services
    Cornell Statistical Consulting Unit
  • Alumni

    Alumni
    Cornell's Statistics and Data Science degrees prepare students for a wide variety of careers, from academia to industry.  See the After Graduation page for a general overview of...

    Alumni Profiles

Search form

You are here

  1. Home 
  2. Events 
  3. Statistics Seminars

Statistics Seminar Speaker: Pragya Sur, 05/03/2023

Event Layout

Wednesday May 03 2023

Statistics Seminar Speaker: Pragya Sur, 05/03/2023

4:15pm @ G01 Biotechnology
In Statistics Seminars

Pragya Sur is an Assistant Professor in the Statistics Department at Harvard. Prior to her current position, she was a postdoctoral fellow at the Center for Research on Computation and Society, Harvard SEAS. She obtained her Ph.D. from Stanford Statistics in 2019. Her research spans high-dimensional statistics and machine learning theory, with focus on high-dimensional regression, classification, causal inference, ensemble learning, and learning under distribution shifts. Her research is supported by an NSF DMS Award and a William F. Milton Fund Award (both solo PI). She is an International Strategy Forum (ISF) 2023 Asia Fellow, chosen by Schmidt Futures, a philanthropic initiative founded by Eric and Wendy Schmidt. As part of this, she currently participates in an 11-month, non-residential fellowship program for rising leaders ages 25 – 35 from across Africa, Asia, North America, and Europe. In Fall, 2021, she was invited to speak at the National Academies’ Board on Mathematical Sciences and Analytics symposium on Mathematical Challenges for Machine Learning and Artificial Intelligence, and also visited the Simons Institute for the Theory of Computing as a long-term participant. In 2019, she received the Theodore W. Anderson Theory of Statistics Dissertation Award for “deep original results in large sample maximum likelihood theory for logistic regression with a large number of covariates”.

Talk: A new central limit theorem for the augmented IPW estimator in high dimensions

Join via Zoom 
Meeting ID: 984 2423 1705
Passcode: 354857

Abstract: Estimating the average treatment effect (ATE) is a central problem in causal inference. Modern advances in the field studied estimation and inference for the ATE in high dimensions through a variety of approaches. Doubly robust estimators such asthe augmented inverse probability weighting (AIPW) form a popular approach in this context. However, the high-dimensional literature surrounding these estimators relies on sparsity conditions, either on the outcome regression (OR) or the propensity score (PS) model. This talk will introduce a new central limit theorem for the classical AIPW estimator, that applies agnostic to such sparsity-type assumptions. Specifically, we will study properties of the cross-fit version of the estimator under well-specified OR and PS models, and the proportional asymptotics regime where the number of confounders and sample size diverge proportional to each other. Under assumptions on the covariate distribution, our CLT will uncover two crucial phenomena among others: (i) the cross-fit AIPW exhibits a substantial variance inflation that can be quantified in terms of the signal-to-noise ratio and other problem parameters, (ii) the asymptotic covariance between the estimators used while cross-fitting is non-negligible even on the root-n scale. These findings are strikingly different from their classical counterparts, and open a vista of possibilities for studying similar other high-dimensional effects. On the technical front, our work utilizes a novel interplay between three distinct tools—approximate message passing theory, the theory of deterministic equivalents, and the leave-one-out approach. Time permitting, I will outline some of these techniques.
 

Event Categories

  • Statistics Seminars
  • Special Events

Image Gallery

Pragya Sur
  • Home
  • About Us
  • Contact Us
  • Careers
© Cornell University Department of Statistics and Data Science

1198 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853

Social Menu

  • Facebook
  • Twitter
  • YouTube
Cornell Bowers CIS College of Computing and Information Science Cornell CALS ILR School

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.