Skip to main content
Cornell university
Cornell Statistics and Data Science Cornell Statistics and Data Science
  • About Us

    About Us
    Cornell's Department of Statistics and Data Science offers four programs at the undergraduate and graduate levels. Undergraduates can earn a BA in statistical science, social...

    Welcome to the Department of Statistics and Data Science
    History
    Facilities
    Statistics Graduate Society
    Recently Published Papers
  • Academics

    Academics

    Undergraduate
    PhD
    MPS
    PhD Minor in Data Science
    Courses & Course Enrollment
  • People

    People

    Faculty
    Field Faculty
    PhDs
    Emeritus Faculty
    Academic Staff
    Staff
    Research Areas of Expertise
    Statistical Consultants
  • News and Events

    News and Events

    Events
    News
  • Resources

    Resources

    Professional Societies and Meetings
    Affiliated Groups
    Career Services
    Cornell Statistical Consulting Unit
  • Alumni

    Alumni
    Cornell's Statistics and Data Science degrees prepare students for a wide variety of careers, from academia to industry.  See the After Graduation page for a general overview of...

    Alumni Profiles

Search form

You are here

  1. Home 
  2. Events 
  3. Statistics Seminars

Statistics Seminar Speaker: Morgane Austern 02/02/2021

Event Layout

Tuesday Feb 02 2021

Statistics Seminar Speaker: Morgane Austern 02/02/2021

10:00am @ Virtual seminar
In Statistics Seminars

Morgane Austern is a postdoctoral researcher at Microsoft Research New-England. She obtained her Ph.D in Statistics from Columbia University in 2019, where she worked under the supervision of Peter Orbanz and Arian Maleki. She is interested in problems in probability and statistics that are motivated by machine learning. Notably, her research focuses on developing probability tools for modern machine learning estimators, and on establishing the properties of learning algorithms for structured and dependent data.

Talk: Asymptotics of learning on dependent and structured random objects

A link to this Zoom talk will be sent to the Stats Seminar list serv

Abstract: Classical statistical inference relies on numerous tools from probability theory to study the properties of estimators. However, these same tools are often inadequate to study modern machine problems that frequently involve structured data (e.g networks) or complicated dependence structures (e.g dependent random matrices). In this talk, we extend universal limit theorems beyond the classical setting. Firstly, we consider distributionally "structured" and dependent random object-i.e random objects whose distribution are invariant under the action of an amenable group. We show, under mild moment and mixing conditions, a series of universal second and third order limit theorems: central-limit theorems, concentration inequalities, Wigner semi-circular law and Berry-Esseen bounds. The utility of these will be illustrated by a series of examples in machine learning, network and information theory. Secondly by building on these results, we establish the asymptotic distribution of the cross-validated risk with the number of folds allowed to grow at an arbitrary rate. Using this, we study the statistical speed-up of cross validation compared to a train-test split procedure, which reveals surprising results even when used on simple estimators.

Event Categories

  • Statistics Seminars
  • Special Events
  • Home
  • About Us
  • Contact Us
  • Careers
© Cornell University Department of Statistics and Data Science

1198 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853

Social Menu

  • Facebook
  • Twitter
  • YouTube
Cornell Bowers CIS College of Computing and Information Science Cornell CALS ILR School

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.