Skip to main content
Cornell university
Cornell Statistics and Data Science Cornell Statistics and Data Science
  • About Us

    About Us
    Cornell's Department of Statistics and Data Science offers four programs at the undergraduate and graduate levels. Undergraduates can earn a BA in statistical science, social...

    Welcome to the Department of Statistics and Data Science
    History
    Facilities
    Statistics Graduate Society
    Recently Published Papers
  • Academics

    Academics

    Undergraduate
    PhD
    MPS
    PhD Minor in Data Science
    Courses & Course Enrollment
  • People

    People

    Faculty
    Field Faculty
    PhDs
    Emeritus Faculty
    Academic Staff
    Staff
    Research Areas of Expertise
    Statistical Consultants
  • News and Events

    News and Events

    Events
    News
  • Resources

    Resources

    Professional Societies and Meetings
    Affiliated Groups
    Career Services
    Cornell Statistical Consulting Unit
  • Alumni

    Alumni
    Cornell's Statistics and Data Science degrees prepare students for a wide variety of careers, from academia to industry.  See the After Graduation page for a general overview of...

    Alumni Profiles

Search form

You are here

  1. Home 
  2. Events 
  3. Statistics Seminars

Statistics Seminar Speaker: Kosuke Imai, 10/18/2017

Event Layout

Wednesday Oct 18 2017

Statistics Seminar Speaker: Kosuke Imai, 10/18/2017

4:15pm @ G01 Biotechnology
In Statistics Seminars

The Statistics Seminar speaker for Wednesday, October 18, 2017 will be Kosuke Imai, Professor in the Department of Politics and the Center for Statistics and Machine Learning at Princeton University. At Princeton, he served as the founding director of the Program in Statistics and Machine Learning. Outside of Princeton, Imai is currently serving as the President of the Society for Political Methodology and was elected fellow in 2017. After obtaining a B.A. in Liberal Arts from the University of Tokyo (1998), Imai received an A.M. in Statistics (2002) and a Ph.D. in political science (2003) from Harvard University. Imai's research area is political methodology and more generally applied statistics in the social sciences. He has extensively worked on the development and applications of statistical methods for causal inference with experimental and observational data. Other areas of his methodological research are survey methodology and computational algorithms for data-intensive social science research. His substantive applications range from the randomized evaluation of Mexican universal health insurance program to the study of public opinion and insurgent violence in Afghanistan.  Imai is the author of a recently published textbook, Quantitative Social Science: An Introduction (Princeton University Press, 2017). 

Talk: Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Abstract: Social scientists use conjoint analysis, which is based on randomized experiments with a factorial design, to analyze multidimensional preferences in a population. In such experiments, several factors, each with multiple levels, are randomized to form a large number of possible treatment conditions. To explore causal interaction in factorial experiments, we propose a new definition of causal interaction effect, called the average marginal interaction effect (AMIE). Unlike the conventional interaction effect, the relative magnitude of the AMIE does not depend on the choice of baseline conditions, making its interpretation intuitive even for high-order interaction. We show that the AMIE can be nonparametrically estimated using the ANOVA regression with weighted zero-sum constraints. These two properties enable us to directly regularize the AMIEs by collapsing levels and selecting factors within a penalized ANOVA framework. This reduces false discovery rate and further facilitates interpretation. Finally, we apply the proposed methodology to the conjoint analysis of ethnic voting behavior in Africa and find clear patterns of causal interaction between politicians' ethnicity and their prior records. The proposed method is implemented through the open-source software.  The paper is available at https://imai.princeton.edu/research/int.html

Event Categories

  • Statistics Seminars
  • Special Events

Image Gallery

Imai, Kosuke
  • Home
  • About Us
  • Contact Us
  • Careers
© Cornell University Department of Statistics and Data Science

1198 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853

Social Menu

  • Facebook
  • Twitter
  • YouTube
Cornell Bowers CIS College of Computing and Information Science Cornell CALS ILR School

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.