Skip to main content
Cornell university
Cornell Statistics and Data Science Cornell Statistics and Data Science
  • About Us

    About Us
    Cornell's Department of Statistics and Data Science offers four programs at the undergraduate and graduate levels. Undergraduates can earn a BA in statistical science, social...

    Welcome to the Department of Statistics and Data Science
    History
    Facilities
    Statistics Graduate Society
    Recently Published Papers
  • Academics

    Academics

    Undergraduate
    PhD
    MPS
    PhD Minor in Data Science
    Courses & Course Enrollment
  • People

    People

    Faculty
    Field Faculty
    PhDs
    Emeritus Faculty
    Academic Staff
    Staff
    Research Areas of Expertise
    Statistical Consultants
  • News and Events

    News and Events

    Events
    News
  • Resources

    Resources

    Professional Societies and Meetings
    Affiliated Groups
    Career Services
    Cornell Statistical Consulting Unit
  • Alumni

    Alumni
    Cornell's Statistics and Data Science degrees prepare students for a wide variety of careers, from academia to industry.  See the After Graduation page for a general overview of...

    Alumni Profiles

Search form

You are here

  1. Home 
  2. Events 
  3. Statistics Seminars

Statistics Seminar Speaker: Kean Ming Tan, 11/13/2019

Event Layout

Wednesday Nov 13 2019

Statistics Seminar Speaker: Kean Ming Tan, 11/13/2019

4:15pm @ G01 Biotechnology
In Statistics Seminars

The Statistics Seminar speaker for Wednesday, November 13, 2019, will be Kean Ming, an assistant professor at the University of Michigan. He is an applied statistician working on statistical machine learning methods for analyzing complex biomedical data sets. He develops multivariate statistical methods such as probabilistic graphical models, cluster analysis, discriminant analysis, and  dimension reduction to uncover patterns from massive data set. Recently, he also work on topics related to robust statistics, non-convex optimization, and data integration from multiple sources.

Talk: Sparse Generalized Eigenvalue Problem and Its Application to Neuroscience

Abstract: Sparse generalized eigenvalue problem (GEP) plays a pivotal role in a large family of high-dimensional learning tasks, including sparse Fisher’s discriminant analysis, canonical correlation analysis, and sufficient dimension reduction. Most of the existing methods and theory in the context of specific statistical models that are special cases of sparse GEP require restrictive structural assumptions on the input matrices. This talk will focus on a two-stage computational framework for solving the non-convex optimization problem resulting from the sparse GEP.  At the first stage, we solve a convex relaxation of the sparse GEP. Taking the solution as an initial value, we then exploit a non-convex optimization perspective and propose the truncated Rayleigh flow method (Rifle) to estimate the leading generalized eigenvector, and show that it converges to a solution with the optimal statistical rate of convergence. Theoretically, our method significantly improves upon the existing literature by eliminating the structural assumptions on the input matrices. Numerical studies in the context of several statistical models are provided to validate the theoretical results. We then apply the proposed method to an electrocorticography data to understand how human brains recall and mentally rehearse word sequences.

Event Categories

  • Statistics Seminars
  • Special Events

Image Gallery

Kean Ming Tan
  • Home
  • About Us
  • Contact Us
  • Careers
© Cornell University Department of Statistics and Data Science

1198 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853

Social Menu

  • Facebook
  • Twitter
  • YouTube
Cornell Bowers CIS College of Computing and Information Science Cornell CALS ILR School

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.