Skip to main content
Cornell university
Cornell Statistics and Data Science Cornell Statistics and Data Science
  • About Us

    About Us
    Cornell's Department of Statistics and Data Science offers four programs at the undergraduate and graduate levels. Undergraduates can earn a BA in statistical science, social...

    Welcome to the Department of Statistics and Data Science
    History
    Facilities
    Statistics Graduate Society
    Recently Published Papers
  • Academics

    Academics

    Undergraduate
    PhD
    MPS
    PhD Minor in Data Science
    Courses & Course Enrollment
  • People

    People

    Faculty
    Field Faculty
    PhDs
    Emeritus Faculty
    Academic Staff
    Staff
    Research Areas of Expertise
    Statistical Consultants
  • News and Events

    News and Events

    Events
    News
  • Resources

    Resources

    Professional Societies and Meetings
    Affiliated Groups
    Career Services
    Cornell Statistical Consulting Unit
  • Alumni

    Alumni
    Cornell's Statistics and Data Science degrees prepare students for a wide variety of careers, from academia to industry.  See the After Graduation page for a general overview of...

    Alumni Profiles

Search form

You are here

  1. Home 
  2. Events 
  3. Statistics Seminars

Statistics Seminar Speaker: Guang Cheng, 09/14/2016

Event Layout

Wednesday Sep 14 2016

Statistics Seminar Speaker: Guang Cheng, 09/14/2016

4:15pm @ G01 Biotechnology
In Statistics Seminars

The Statistics Seminar speaker for Wednesday, Sept. 14, 2016, will be Guang Cheng, a Professor of Statistics at Purdue University.  He received his PhD in Statistics from University of Wisconsin-Madison in 2006.  His research interests include Big Data, Machine Learning and High Dimensional Statistical Inferences.  Cheng is the recipient of the NSF CAREER award, Noether Young Scholar Award and Simons Fellowship in Mathematics.  Please visit his big data theory research group at http://www.stat.purdue.edu/~chengg/

Title: Bayesian Aggregation for Extraordinarily Large Dataset

Abstract: In this talk, a set of scalable Bayesian inference procedures is developed for a general class of nonparametric regression models based on embarrassingly parallel MCMC. Specifically, we first perform independent nonparametric Bayesian inference on each subset split from a massive dataset, and then aggregate those local results into global counterparts. This aggregation step is explicit without involving any additional computation cost. By a careful partition, we show that our aggregated inference results obtain the oracle rule in the sense that they are equivalent to those obtained directly from the entire data (which are computationally prohibitive in practice, though). For example, aggregated credible balls achieve desirable credibility level and frequentist coverage possessed by their oracle counterparts (with similar radii). This oracle matching phenomenon occurs due to a delicate geometric structure of the infinite-dimensional parameter space in consideration. This theoretical talk is based on http://arxiv.org/abs/1508.04175

Refreshments will be served following the seminar in 1181 Comstock Hall. 

Event Categories

  • Statistics Seminars
  • Special Events
  • Home
  • About Us
  • Contact Us
  • Careers
© Cornell University Department of Statistics and Data Science

1198 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853

Social Menu

  • Facebook
  • Twitter
  • YouTube
Cornell Bowers CIS College of Computing and Information Science Cornell CALS ILR School

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.