Skip to main content
Cornell university
Cornell Statistics and Data Science Cornell Statistics and Data Science
  • About Us

    About Us
    Cornell's Department of Statistics and Data Science offers four programs at the undergraduate and graduate levels. Undergraduates can earn a BA in statistical science, social...

    Welcome to the Department of Statistics and Data Science
    History
    Facilities
    Statistics Graduate Society
    Recently Published Papers
  • Academics

    Academics

    Undergraduate
    PhD
    MPS
    PhD Minor in Data Science
    Courses & Course Enrollment
  • People

    People

    Faculty
    Field Faculty
    PhDs
    Emeritus Faculty
    Academic Staff
    Staff
    Research Areas of Expertise
    Statistical Consultants
  • News and Events

    News and Events

    Events
    News
  • Resources

    Resources

    Professional Societies and Meetings
    Affiliated Groups
    Career Services
    Cornell Statistical Consulting Unit
  • Alumni

    Alumni
    Cornell's Statistics and Data Science degrees prepare students for a wide variety of careers, from academia to industry.  See the After Graduation page for a general overview of...

    Alumni Profiles

Search form

You are here

  1. Home 
  2. Events 
  3. Statistics Seminars

Statistics Seminar Speaker: Dana Yang 02/03/2021

Event Layout

Wednesday Feb 03 2021

Statistics Seminar Speaker: Dana Yang 02/03/2021

10:00am @ Virtual seminar
In Statistics Seminars

Dana Yang is a Postdoctoral Researcher hosted by Dr. Jiaming Xu at the Fuqua School of Business, Duke University. Dana received her PhD in Statistics and Data Science in 2019 from Yale University, where she was co-advised by Dr. John Lafferty, Dr. David Pollard, and Dr. Yihong Wu. She received her MA in Statistics from Yale University in 2014, and her BS in Mathematics from Tsinghua University in 2013. Her research interest is in the broad area of high-dimensional statistics and machine learning, including random network analysis, optimality analysis, Bayesian analysis, oracle inequalities, nonparametric estimation, convergence analysis, and ethics and safety in machine learning.

Talk: Sharp thresholds for the recovery of hidden nearest neighbor graphs 

A link to this Zoom talk will be sent to the Stats Seminar list serv

Abstract: Motivated by applications such as discovering strong ties in social networks and assembling genome subsequences in biology, we study the problem of recovering a hidden nearest neighbor (NN) graph in a random complete graph, whose edge weights are independent and distributed according to P for edges in the hidden NN graph and Q otherwise. This model incorporates the celebrated Watts-Strogatz small-world graph as a special case. For both the exact and almost exact recovery problems, we characterize the sharp information-theoretic limits, which are governed by two distinct divergence measures between P and Q. I will highlight the key proof strategies and provide some intuition behind the sharp thresholds, with the help of a lot of pictures.

Event Categories

  • Statistics Seminars
  • Special Events
  • Home
  • About Us
  • Contact Us
  • Careers
© Cornell University Department of Statistics and Data Science

1198 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853

Social Menu

  • Facebook
  • Twitter
  • YouTube
Cornell Bowers CIS College of Computing and Information Science Cornell CALS ILR School

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.