Skip to main content
Cornell university
Cornell Statistics and Data Science Cornell Statistics and Data Science
  • About Us

    About Us
    Cornell's Department of Statistics and Data Science offers four programs at the undergraduate and graduate levels. Undergraduates can earn a BA in statistical science, social...

    Welcome to the Department of Statistics and Data Science
    History
    Facilities
    Statistics Graduate Society
    Recently Published Papers
  • Academics

    Academics

    Undergraduate
    PhD
    MPS
    PhD Minor in Data Science
    Courses & Course Enrollment
  • People

    People

    Faculty
    Field Faculty
    PhDs
    Emeritus Faculty
    Academic Staff
    Staff
    Research Areas of Expertise
    Statistical Consultants
  • News and Events

    News and Events

    Events
    News
  • Resources

    Resources

    Professional Societies and Meetings
    Affiliated Groups
    Career Services
    Cornell Statistical Consulting Unit
  • Alumni

    Alumni
    Cornell's Statistics and Data Science degrees prepare students for a wide variety of careers, from academia to industry.  See the After Graduation page for a general overview of...

    Alumni Profiles

Search form

You are here

  1. Home 
  2. Events 
  3. Statistics Seminars

Statistics Seminar Speaker: Arkajyoti Saha 1/31/2024

Event Layout

Wednesday Jan 31 2024

Statistics Seminar Speaker: Arkajyoti Saha 1/31/2024

4:15pm @ G01 Biotech
In Statistics Seminars

Arkajyoti Saha is a postdoctoral fellow in the Department of Statistics, University of Washington. He received his Ph.D. in Biostatistics from the Johns Hopkins Bloomberg School of Public Health. His research lies at the intersection of machine learning, selective inference, and spatial statistics, with a focus on machine learning under dependence with applications in genomics and oceanography.

Talk: Inference for machine learning under dependence

Abstract: Recent interest has centered on uncertainty quantification for machine learning models. For the most part, this work has assumed independence of the observations. However, many of the most important problems arising across scientific fields, from genomics to climate science, involve systems where dependence cannot be ignored. In this talk, I will investigate inference on machine learning models in the presence of dependence. 

In the first part of my talk, I will consider a common practice in the field of genomics in which researchers compute a correlation matrix between genes and threshold its elements in order to extract groups of independent genes. I will describe how to construct valid p-values associated with these discovered groups that properly account for the group selection process.  While this is related to the literature on selective inference developed in the past decade, this work involves inference about the covariance matrix rather than the mean, and therefore requires an entirely new technical toolset. This same toolset can be applied to quantify the uncertainty associated with canonical correlation analysis after feature screening. 

In the second part of my talk, I will turn to an important problem in the field of oceanography as it relates to climate science. Oceanographers have recently applied random forests to estimate carbon export production, a key quantity of interest, at a given location in the ocean; they then wish to sum the estimates across the world’s oceans to obtain an estimate of global export production. While quantifying uncertainty associated with a single estimate is relatively straightforward, quantifying uncertainty of the summed estimates is not, due to their complex dependence structure. I will adapt the theory of V-statistics to this dependent data setting in order to establish a central limit theorem for the summed estimates, which can be used to quantify the uncertainty associated with global export production across the world’s oceans.

This is joint work with my postdoctoral supervisors, Daniela Witten (University of Washington) and Jacob Bien (University of Southern California).

Event Categories

  • Statistics Seminars
  • Special Events

Image Gallery

A color photo of a man smiling for a photo in a snowy setting
  • Home
  • About Us
  • Contact Us
  • Careers
© Cornell University Department of Statistics and Data Science

1198 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853

Social Menu

  • Facebook
  • Twitter
  • YouTube
Cornell Bowers CIS College of Computing and Information Science Cornell CALS ILR School

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.