Skip to main content
Cornell university
Cornell Statistics and Data Science Cornell Statistics and Data Science
  • About Us

    About Us
    Cornell's Department of Statistics and Data Science offers four programs at the undergraduate and graduate levels. Undergraduates can earn a BA in statistical science, social...

    Welcome to the Department of Statistics and Data Science
    History
    Facilities
    Statistics Graduate Society
    Recently Published Papers
  • Academics

    Academics

    Undergraduate
    PhD
    MPS
    PhD Minor in Data Science
    Courses & Course Enrollment
  • People

    People

    Faculty
    Field Faculty
    PhDs
    Emeritus Faculty
    Academic Staff
    Staff
    Research Areas of Expertise
    Statistical Consultants
  • News and Events

    News and Events

    Events
    News
  • Resources

    Resources

    Professional Societies and Meetings
    Affiliated Groups
    Career Services
    Cornell Statistical Consulting Unit
  • Alumni

    Alumni
    Cornell's Statistics and Data Science degrees prepare students for a wide variety of careers, from academia to industry.  See the After Graduation page for a general overview of...

    Alumni Profiles

Search form

You are here

  1. Home 
  2. Events 
  3. Statistics Seminars

Statistics Seminar Speaker: Anru Zhang, 12/04/2019

Event Layout

Wednesday Dec 04 2019

Statistics Seminar Speaker: Anru Zhang, 12/04/2019

4:15pm @ G01 Biotechnology
In Statistics Seminars

The Statistics Seminar speaker for Wednesday, December 4, 2019, will be Anru Zhang, an assistant professor at the Department of Statistics, University of Wisconsin-Madison. He is also affiliated to  Machine Learning Group and Institute for Foundations of Data Science at UW-Madison. He obtained the PhD degree from University of Pennsylvania in 2015 and a bachelor’s degree from Peking University in 2010. His current research interests include Statistical Learning Theory, High-dimensional Statistical Inference, Tensor Data Analysis. His research is partially supported by grants from the National Science Foundation and the National Institute of Health.

Talk: Efficient and Optimal Tensor Supervised Learning via Importance Sketching

Abstract: The past decade has seen a large body of work on high-dimensional tenors or multiway arrays that arise in numerous applications. In many of these settings, the tensor of interest is high-dimensional in that the ambient dimension is substantially larger than the sample size. Oftentimes, however, the tensor comes with natural low-rank or sparsity structures. How to exploit such structures of tensors poses new statistical and computational challenges.

In this talk, we develop a novel procedure for low-rank tensor supervised learning, namely Importance Sketching Low-rank Estimation for Tensors (ISLET), to address these challenges. The central idea behind ISLET is what we call importance sketching, carefully designed sketches based on both the responses and the structures of the parameter of interest. We show that our estimating method is sharply minimax optimal in terms of the mean-squared error under low-rank Tucker assumptions. In addition, if a tensor is low-rank with group sparsity, our procedure also achieves minimax optimality. Further, we show through numerical studies that ISLET achieves comparable mean-squared error performance to existing state-of-the-art methods whilst having substantial storage and run-time advantages. In particular, our procedure performs reliable tensor estimation with tensors of dimension p = O(10^8) and is 1 or 2 orders of magnitude faster than baseline methods.

Event Categories

  • Statistics Seminars
  • Special Events

Image Gallery

Anru Zhang
  • Home
  • About Us
  • Contact Us
  • Careers
© Cornell University Department of Statistics and Data Science

1198 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853

Social Menu

  • Facebook
  • Twitter
  • YouTube
Cornell Bowers CIS College of Computing and Information Science Cornell CALS ILR School

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.