Skip to main content
Cornell university
Cornell Statistics and Data Science Cornell Statistics and Data Science
  • About Us

    About Us
    Cornell's Department of Statistics and Data Science offers four programs at the undergraduate and graduate levels. Undergraduates can earn a BA in statistical science, social...

    Welcome to the Department of Statistics and Data Science
    History
    Facilities
    Statistics Graduate Society
    Recently Published Papers
  • Academics

    Academics

    Undergraduate
    PhD
    MPS
    PhD Minor in Data Science
    Courses & Course Enrollment
  • People

    People

    Faculty
    Field Faculty
    PhDs
    Emeritus Faculty
    Academic Staff
    Staff
    Research Areas of Expertise
    Statistical Consultants
  • News and Events

    News and Events

    Events
    News
  • Resources

    Resources

    Professional Societies and Meetings
    Affiliated Groups
    Career Services
    Cornell Statistical Consulting Unit
  • Alumni

    Alumni
    Cornell's Statistics and Data Science degrees prepare students for a wide variety of careers, from academia to industry.  See the After Graduation page for a general overview of...

    Alumni Profiles

Search form

You are here

  1. Home 
  2. Events 
  3. Statistics Seminars

Statistics Seminar Speaker: Ambuj Tewari, 4/26/2017

Event Layout

Wednesday Apr 26 2017

Statistics Seminar Speaker: Ambuj Tewari, 4/26/2017

4:15pm @ G01 Biotechnology
In Statistics Seminars

The Statistics Seminar speaker for Wednesday, April 26, 2017, is Ambuj Tewari, an assistant professor in the Department of Statistics and the Department of EECS (by courtesy) at the University of Michigan, Ann Arbor. He is also affiliated with the Michigan Institute for Data Science (MIDAS). He obtained his PhD under the supervision of Peter Bartlett at the University of California at Berkeley. His research interests lie in machine learning including statistical learning theory, online learning, reinforcement learning and control theory, network analysis, and optimization for machine learning. He collaborates with scientists to seek novel applications of machine learning in mobile health, learning analytics, and computational chemistry. His research has been recognized with paper awards at COLT 2005, COLT 2011, and AISTATS 2015. He was the recipient of an NSF CAREER award in 2015 and a Sloan Research Fellowship in 2017.

Title: Random Perturbations in Machine Learning

Abstract: Hannan proved a fundamental result in online learning leading to a notion now called Hannan consistency. Breiman coined the term “bagging” to denote bootstrap aggregating. Current algorithms for training deep neural networks use a technique called dropout. What do these three ideas have in common?

All three ideas rely on using random perturbations of some sort to enable learning. With help from collaborators, I have been trying to better understand the mathematical properties of random perturbation methods in machine learning, especially in online learning. In this talk, I will briefly describe what we have learned. I will also discuss fascinating questions that remain open. No prior knowledge of online learning will be assumed.

(Talk is based on joint work with Jacob Abernethy, Chansoo Lee, and Zifan Li.)

Event Categories

  • Statistics Seminars
  • Special Events
  • Home
  • About Us
  • Contact Us
  • Careers
© Cornell University Department of Statistics and Data Science

1198 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853

Social Menu

  • Facebook
  • Twitter
  • YouTube
Cornell Bowers CIS College of Computing and Information Science Cornell CALS ILR School

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.