Skip to main content
Cornell university
Cornell Statistics and Data Science Cornell Statistics and Data Science
  • About Us

    About Us
    Cornell's Department of Statistics and Data Science offers four programs at the undergraduate and graduate levels. Undergraduates can earn a BA in statistical science, social...

    Welcome to the Department of Statistics and Data Science
    History
    Facilities
    Statistics Graduate Society
    Recently Published Papers
  • Academics

    Academics

    Undergraduate
    PhD
    MPS
    PhD Minor in Data Science
    Courses & Course Enrollment
  • People

    People

    Faculty
    Field Faculty
    PhDs
    Emeritus Faculty
    Academic Staff
    Staff
    Research Areas of Expertise
    Statistical Consultants
  • News and Events

    News and Events

    Events
    News
  • Resources

    Resources

    Professional Societies and Meetings
    Affiliated Groups
    Career Services
    Cornell Statistical Consulting Unit
  • Alumni

    Alumni
    Cornell's Statistics and Data Science degrees prepare students for a wide variety of careers, from academia to industry.  See the After Graduation page for a general overview of...

    Alumni Profiles

Search form

You are here

  1. Home 
  2. Events

Student Statistics Seminar Speaker Nicholas James, 2/12/13

This week's Graduate Student Seminar speaker is Nicholas James, from ORIE.

Talk Title: A Nonparametric Approach for Multiple Change Point Analysis of Multivariate Data

Abstract

Change point analysis has applications in a wide variety of fields. The general problem concerns the inference of a change in distribution for a set of time-ordered observations. For a set of multivariate observations of arbitrary dimension, we consider nonparametric estimation of both the number of change points and the positions at which they occur. We do not make any assumptions regarding the nature of the change in distribution or any distribution assumptions beyond the existence of the αth absolute moment, for some α ∈ (0, 2). Estimation is based on hierarchical clustering and we propose both divisive and agglomerative algorithms. The divisive method is shown to provide consistent estimates of both the number and location of change points under standard regularity assumptions. We compare the proposed approach with competing methods in a simulation study. Methods from cluster analysis are applied to assess performance and to allow simple comparisons of location estimates, even when the estimated number differs.

Event Categories

  • Statistics Seminars
  • Special Events
  • Home
  • About Us
  • Contact Us
  • Careers
© Cornell University Department of Statistics and Data Science

1198 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853

Social Menu

  • Facebook
  • Twitter
  • YouTube
Cornell Bowers CIS College of Computing and Information Science Cornell CALS ILR School

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.