Skip to main content
Cornell university
Cornell Statistics and Data Science Cornell Statistics and Data Science
  • About Us

    About Us
    Cornell's Department of Statistics and Data Science offers four programs at the undergraduate and graduate levels. Undergraduates can earn a BA in statistical science, social...

    Welcome to the Department of Statistics and Data Science
    History
    Facilities
    Statistics Graduate Society
    Recently Published Papers
  • Academics

    Academics

    Undergraduate
    PhD
    MPS
    PhD Minor in Data Science
    Courses & Course Enrollment
  • People

    People

    Faculty
    Field Faculty
    PhDs
    Emeritus Faculty
    Academic Staff
    Staff
    Research Areas of Expertise
    Statistical Consultants
  • News and Events

    News and Events

    Events
    News
  • Resources

    Resources

    Professional Societies and Meetings
    Affiliated Groups
    Career Services
    Cornell Statistical Consulting Unit
  • Alumni

    Alumni
    Cornell's Statistics and Data Science degrees prepare students for a wide variety of careers, from academia to industry.  See the After Graduation page for a general overview of...

    Alumni Profiles

Search form

You are here

  1. Home 
  2. Events

Statistics Student Seminar Speaker Maximillian Chen 03-04-2014

This week's Statistics Student Seminar speaker will be Maximillian Chen.

Talk Title: Dimension Reduction and Inferential Procedures for Images

Abstract: 

High-dimensional data analysis has been a prominent topic of statistical research in recent years due to the growing presence of high-dimensional electronic data. Much of the current work has been done on analyzing a sample of high-dimensional multivariate data. However, not as much research has been done on analyzing a sample of matrix-variate data. The population value decomposition (PVD), originated in Crainiceanu et al (2011), is a method for dimension reduction of a population of massive images. Images are decomposed into a product of two orthogonal matrices with population-specific features and one matrix with subject-specific features. The problems of finding the optimal row and column dimensions of reduction for the population of data matrices and inference in the PVD framework have yet to be solved. To find the optimal row and column dimensions, we base our methods on the low-rank approximation methods and optimization procedures of Manton et al (2003). In order to develop our inferential procedures, we assume our data to be matrix normally distributed. We introduce likelihood-ratio tests, score tests, and regression-based inferential procedures for the one, two, and k-sample problems and derive the distributions of the resulting test statistics. Practical implementation will be discussed.

Event Categories

  • Statistics Seminars
  • Special Events

Image Gallery

Max Chen
  • Home
  • About Us
  • Contact Us
  • Careers
© Cornell University Department of Statistics and Data Science

1198 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853

Social Menu

  • Facebook
  • Twitter
  • YouTube
Cornell Bowers CIS College of Computing and Information Science Cornell CALS ILR School

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.