Skip to main content
Cornell university
Cornell Statistics and Data Science Cornell Statistics and Data Science
  • About Us

    About Us
    Cornell's Department of Statistics and Data Science offers four programs at the undergraduate and graduate levels. Undergraduates can earn a BA in statistical science, social...

    Welcome to the Department of Statistics and Data Science
    History
    Facilities
    Statistics Graduate Society
    Recently Published Papers
  • Academics

    Academics

    Undergraduate
    PhD
    MPS
    PhD Minor in Data Science
    Courses & Course Enrollment
  • People

    People

    Faculty
    Field Faculty
    PhDs
    Emeritus Faculty
    Academic Staff
    Staff
    Research Areas of Expertise
    Statistical Consultants
  • News and Events

    News and Events

    Events
    News
  • Resources

    Resources

    Professional Societies and Meetings
    Affiliated Groups
    Career Services
    Cornell Statistical Consulting Unit
  • Alumni

    Alumni
    Cornell's Statistics and Data Science degrees prepare students for a wide variety of careers, from academia to industry.  See the After Graduation page for a general overview of...

    Alumni Profiles

Search form

You are here

  1. Home 
  2. [Cornell Day of Statistics]

Jun Liu

Harvard Logo

Jun Liu is a Professor of Statistics at Harvard University. For more information and for a list of publications and research interests, visit Liu's webpage.

Title: "Detecting Relationships Via Slicing and Inverse Modeling"

Abstract: I will discuss a few recent results from my group exploring the utility of inverse modeling in detecting nonlinear relationships. Our investigations bring together ideas from the naive Bayes modeling, Fisher’s linear discriminant analysis, and the sliced inverse regression for dimension reductions. These ideas center around the strategies related to ``slicing” (aka, discretization) of the response variable. In one direction, we optimally slice one variable (or the response) to maximize a score function based on the likelihood‐ratio statistic. Our test statistic, called generalized R‐square or G2, gives rise to a relationship measure taking values in [0,1] and can be viewed as a direct extension of the standard R‐square. We can also fully "Bayesianize" the procedure to arrive at a Bayesian version of G2. The G2 statistic is compared with some popular measures such as Distance Correlation, Pearson Correlation, Maximal Information Criterion, etc., on many simulated examples, and found superior for detecting highly nonlinear and non‐smooth relationships. We will also discuss some theoretical properties of sliced inverse regression in high dimensions.

In This Section

  • Bruce Turnbull
  • Luc Devroye
  • Chris Jennison
  • Iain Johnstone
  • Han Liu
  • Jun Liu
  • Alessandro Rinaldo
  • Nancy Zhang
  • Home
  • About Us
  • Contact Us
  • Careers
© Cornell University Department of Statistics and Data Science

1198 Comstock Hall, 129 Garden Ave., Ithaca, NY 14853

Social Menu

  • Facebook
  • Twitter
  • YouTube
Cornell Bowers CIS College of Computing and Information Science Cornell CALS ILR School

If you have a disability and are having trouble accessing information on this website or need materials in an alternate format, contact web-accessibility@cornell.edu for assistance.